Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[(2,2'-bipyridine)nickel(II)]μ-imidazole-4,5-dicarboxylato]

Lu-Jiang Hao* and Tong-Li Yu

College of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China Correspondence e-mail: lujjanghao001@yahoo.com.cn

Received 15 July 2007; accepted 14 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.066; data-to-parameter ratio = 13.0.

The title compound, $[Ni(C_5HN_2O_4)(C_{10}H_8N_2)]_n$, is isotypic with its Co^{II} and Zn^{II} analogues. The asymmetric unit contains two crystallographically independent monomer units with similar geometry. The Ni^{II} cations have a distorted octahedral environment formed by two carboxylate O atoms and by four N atoms, two of which belong to the 2,2'-bipyridine ligands and two to different imidazole rings. One imidazole-4,5-carboxylate ligand is connected to two Ni^{II} cations, which results in the formation of one-dimensional zigzag chains parallel to [010].

Related literature

For the isotypic Co^{II} and Zn^{II} structures, see: Hao *et al.* (2007); Li *et al.* (2007).

Experimental

Crystal data

[Ni(C₅HN₂O₄)(C₁₀H₈N₂)] $M_r = 367.97$ Monoclinic, $P2_1/c$ a = 20.424 (2) Å b = 9.6712 (10) Å c = 14.751 (1) Å $\beta = 101.798$ (1)°

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) T_{min} = 0.819, T_{max} = 0.819

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	433 parameters
$wR(F^2) = 0.066$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
5614 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

V = 2852.1 (4) Å³

Mo $K\alpha$ radiation $\mu = 1.39 \text{ mm}^{-1}$

 $0.15 \times 0.15 \times 0.15$ mm

15248 measured reflections

5614 independent reflections

4906 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\rm int} = 0.027$

Z = 8

Table 1			
Selected	bond	lengths	(Å

Ni1-N7 ⁱ	2.0869 (16)	Ni2-N4 ⁱⁱ	2.0775 (17)
Ni1-N6	2.1188 (17)	Ni2-N3	2.0840 (17)
Ni1-N5	2.1235 (17)	Ni2-N1	2.1167 (17)
Ni1-N8	2.2721 (17)	Ni2-N2	2.2040 (17)
Ni1-O8	2.1543 (14)	Ni2-O1	2.2060 (15)
Ni1-O6 ⁱ	2.2052 (14)	Ni2-O4 ⁱⁱ	2.2562 (15)

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors thank Shandong Institute of Light Industry for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2133).

References

- Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hao, L.-J., Bao, Z.-M. & Yu, T.-L. (2007). Acta Cryst. E63, m1871.
- Li, X.-M., Dong, Y.-H., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m1274– m1276.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2374 [doi:10.1107/S1600536807040330]

catena-Poly[[(2,2'-bipyridine)nickel(II)]-*µ*-imidazole-4,5-dicarboxylato]

L.-J. Hao and T.-L. Yu

Comment

In connection with our strucure determination of *catena*-poly[[(2,2'-bipyridine)cobalt(II)]- μ -imidazole-4,5-dicarboxylato] (Hao *et al.*, 2007), we report here the isotypic structure of the Ni^{II} compound. The Zn^{II} analogue (Li *et al.*, 2007) crystallizes also isotypically.

In the title compound, (I), two crystallographically independent monomer units are present in the asymmetric unit. The Ni^{II} cations have a distorted octahedral coordination sphere formed by two carboxylate O atoms and by four N atoms, two of which belong to the 2,2'-bipyridine ligand and the other two to the imidazole ring (Fig. 1). The Ni—O and Ni—N bond lengths are in the range of 2.1543 (14)–2.2562 (15) and 2.0775 (17)–2.2721 (17) Å, respectively, and are similar to the M—O and M—N bond lengths (M = Co, Zn) observed in the corresponding isotypic structures. The two carboxylate groups of the imidazole-4,5-dicarboxylate ligand coordinate in a monodentate fashion with the Ni^{II} cations, whereby the connectivity between the cations and the ligands gives rise to one-dimensional zigzag chains along [010] (Fig. 2). The 2,2'-bipyridine ligands are situated in the space between the chains.

Experimental

All chemicals were purchased from Acros Co. Ltd. The title compound was obtained from the hydrothermal reaction (30 ml autoclave at 452 K for 3 d) of NiCl₂·6H₂O (0.5 mmol), imidazole-4,5-dicarboxylic acid (0.5 mmol), 2,2'-bipyridine (0.5 mmol) and KOH (1 mmol) in 20 ml distilled water. Green crystals were obtained in a yield of approximately 22%. Analysis calculated for $C_{15}H_9N_4NiO_4$: C 48.96, H 2.47, N 15.23%; Found: C 48.88, H 2.47, N 15.16%.

Refinement

The H atoms were positioned geometrically and refined as riding atoms with C—H= 0.93 Å and $U_{iso}(H)$ = 1.2 $U_{eq}(C)$.

Figures

Fig. 1. The two independent molecules in (I), displayed with anisotropic displacement ellipsoids at the 30% probability level for all non-H atoms. H atoms are given as spheres of arbitrary radius. [Symmetry code: (i) -x + 1, y + 1/2, -z + 3/2.]

Fig. 2. A zigzag chain extending parallel to [010] in (I). H atoms have been omitted for clari-

catena-Poly[[(2,2'-bipyridine)nickel(II)]-µ-imidazole-4,5-dicarboxylato]

 $F_{000} = 1496$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.3 - 26.1^{\circ}$

 $\mu = 1.39 \text{ mm}^{-1}$

T = 293 (2) K

 $0.15 \times 0.15 \times 0.15 \text{ mm}$

Cube, green

 $D_{\rm x} = 1.714 {\rm Mg m}^{-3}$ Mo Kα radiation

Cell parameters from 5614 reflections

Crystal data

[Ni(C₅HN₂O₄)(C₁₀H₈N₂)] $M_r = 367.97$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 20.424 (2) Å*b* = 9.6712 (10) Å *c* = 14.7510 (10) Å $\beta = 101.7980 \ (10)^{\circ}$ V = 2852.1 (4) Å³ Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer	5614 independent reflections
Radiation source: fine-focus sealed tube	4906 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 293(2) K	$\theta_{\rm max} = 26.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -25 \rightarrow 20$
$T_{\min} = 0.819, \ T_{\max} = 0.819$	$k = -11 \rightarrow 10$
15248 measured reflections	$l = -17 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.066$	$w = 1/[\sigma^2(F_o^2) + (0.031P)^2 + 1.5005P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.039$
5614 reflections	$\Delta \rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$
433 parameters	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.70626 (11)	0.3208 (2)	0.84600 (14)	0.0280 (5)
H1	0.6703	0.3795	0.8250	0.034*
C2	0.76975 (11)	0.3757 (2)	0.86436 (14)	0.0292 (5)
H2	0.7765	0.4696	0.8565	0.035*
C3	0.82307 (11)	0.2885 (2)	0.89466 (15)	0.0313 (5)
Н3	0.8665	0.3227	0.9076	0.038*
C4	0.81098 (10)	0.1489 (2)	0.90560 (14)	0.0295 (5)
H4	0.8464	0.0881	0.9250	0.035*
C5	0.74584 (10)	0.1011 (2)	0.88736 (13)	0.0236 (4)
C6	0.72867 (10)	-0.0457 (2)	0.90085 (13)	0.0243 (4)
C7	0.77634 (11)	-0.1445 (2)	0.93791 (14)	0.0290 (5)
H7	0.8213	-0.1206	0.9544	0.035*
C8	0.75597 (11)	-0.2782 (2)	0.94981 (15)	0.0327 (5)
H8	0.7872	-0.3458	0.9738	0.039*
С9	0.68885 (11)	-0.3107 (2)	0.92581 (16)	0.0330 (5)
Н9	0.6739	-0.4000	0.9335	0.040*
C10	0.64444 (11)	-0.2073 (2)	0.89007 (15)	0.0311 (5)
H10	0.5992	-0.2288	0.8743	0.037*
C11	0.52685 (10)	0.2341 (2)	0.94608 (14)	0.0250 (4)
C12	0.51350 (9)	0.3154 (2)	0.85976 (13)	0.0226 (4)
C13	0.52113 (10)	0.3687 (2)	0.72120 (14)	0.0240 (4)
H13	0.5344	0.3682	0.6645	0.029*
C14	0.47021 (10)	0.4233 (2)	0.82990 (13)	0.0218 (4)
C15	0.41987 (10)	0.4930 (2)	0.87196 (14)	0.0249 (4)
C16	0.86416 (12)	1.3021 (2)	0.17951 (16)	0.0336 (5)
H16	0.9088	1.3170	0.2069	0.040*
C17	0.82576 (13)	1.4144 (2)	0.14208 (18)	0.0409 (6)
H17	0.8443	1.5024	0.1434	0.049*
C18	0.75971 (13)	1.3921 (3)	0.10311 (18)	0.0425 (6)
H18	0.7325	1.4654	0.0779	0.051*
C19	0.73392 (12)	1.2599 (2)	0.10156 (15)	0.0349 (5)
H19	0.6892	1.2432	0.0754	0.042*
C20	0.77551 (10)	1.1524 (2)	0.13943 (13)	0.0259 (4)

C21	0.75113 (10)	1.0085 (2)	0.14528 (14)	0.0256 (4)
C22	0.68389 (11)	0.9734 (3)	0.12219 (16)	0.0369 (5)
H22	0.6522	1.0388	0.0959	0.044*
C23	0.66441 (12)	0.8402 (3)	0.13871 (18)	0.0436 (6)
H23	0.6195	0.8156	0.1241	0.052*
C24	0.95914 (9)	0.7532 (2)	0.33096 (13)	0.0207 (4)
C25	0.77823 (11)	0.7847 (2)	0.19550 (15)	0.0298 (5)
H25	0.8108	0.7201	0.2199	0.036*
C26	0.93275 (10)	0.8466 (2)	0.39410 (13)	0.0237 (4)
C27	1.04263 (9)	0.5862 (2)	0.43335 (13)	0.0213 (4)
C28	1.00285 (9)	0.6432 (2)	0.34751 (13)	0.0212 (4)
C29	0.97693 (10)	0.6785 (2)	0.20109 (13)	0.0228 (4)
H29	0.9748	0.6693	0.1378	0.027*
C30	0.71208 (11)	0.7442 (3)	0.17694 (16)	0.0383 (6)
H30	0.7000	0.6547	0.1898	0.046*
N1	0.69405 (8)	0.18621 (18)	0.85704 (11)	0.0246 (4)
N2	0.66336 (8)	-0.07771 (18)	0.87706 (12)	0.0253 (4)
N3	0.54579 (8)	0.28113 (17)	0.79038 (11)	0.0235 (4)
N4	0.47564 (8)	0.45708 (17)	0.74142 (11)	0.0231 (4)
N5	0.79758 (8)	0.91347 (18)	0.17983 (11)	0.0246 (4)
N6	0.94283 (8)	0.77605 (17)	0.23760 (11)	0.0219 (4)
N7	1.01414 (8)	0.59611 (17)	0.26445 (11)	0.0220 (4)
N8	0.84001 (8)	1.17327 (18)	0.17805 (12)	0.0269 (4)
Ni1	0.899423 (11)	0.97523 (2)	0.214416 (15)	0.01502 (7)
Ni2	0.597902 (11)	0.09584 (2)	0.819724 (16)	0.01727 (7)
O1	0.56785 (7)	0.13633 (15)	0.95264 (10)	0.0299 (3)
O2	0.49461 (7)	0.26686 (16)	1.00906 (10)	0.0322 (3)
O3	0.41600 (7)	0.45809 (16)	0.95508 (10)	0.0306 (3)
O4	0.38170 (7)	0.57763 (15)	0.82446 (10)	0.0296 (3)
O5	1.03289 (7)	0.63626 (15)	0.51070 (9)	0.0262 (3)
O6	1.08547 (7)	0.49642 (14)	0.42874 (9)	0.0237 (3)
07	0.94594 (8)	0.81809 (16)	0.47985 (10)	0.0344 (4)
08	0.89858 (7)	0.94843 (15)	0.35916 (9)	0.0270(3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0278 (11)	0.0235 (11)	0.0318 (11)	0.0002 (9)	0.0040 (9)	0.0035 (9)
C2	0.0332 (12)	0.0245 (11)	0.0292 (11)	-0.0064 (9)	0.0051 (9)	0.0023 (9)
C3	0.0241 (11)	0.0357 (13)	0.0328 (11)	-0.0075 (9)	0.0028 (9)	0.0031 (10)
C4	0.0241 (11)	0.0297 (12)	0.0328 (11)	0.0003 (9)	0.0013 (9)	0.0048 (9)
C5	0.0223 (10)	0.0255 (11)	0.0218 (10)	0.0007 (8)	0.0019 (8)	-0.0001 (8)
C6	0.0221 (10)	0.0263 (11)	0.0232 (10)	-0.0004 (8)	0.0020 (8)	-0.0010 (8)
C7	0.0229 (11)	0.0315 (12)	0.0303 (11)	0.0022 (9)	0.0003 (8)	-0.0005 (9)
C8	0.0333 (12)	0.0264 (12)	0.0359 (12)	0.0079 (10)	0.0010 (10)	0.0044 (10)
C9	0.0357 (13)	0.0224 (11)	0.0398 (13)	-0.0014 (9)	0.0054 (10)	0.0046 (9)
C10	0.0262 (11)	0.0296 (12)	0.0368 (12)	-0.0039 (9)	0.0045 (9)	0.0025 (10)
C11	0.0220 (10)	0.0249 (11)	0.0260 (10)	-0.0036 (9)	-0.0001 (8)	0.0002 (9)

C12						
CIZ	0.0190 (10)	0.0241 (11)	0.0237 (10)	-0.0020 (8)	0.0019 (8)	-0.0006 (8)
C13	0.0216 (10)	0.0264 (11)	0.0237 (10)	0.0017 (8)	0.0038 (8)	0.0000 (8)
C14	0.0187 (10)	0.0222 (10)	0.0234 (10)	-0.0032 (8)	0.0017 (8)	-0.0004 (8)
C15	0.0218 (10)	0.0242 (11)	0.0284 (11)	-0.0039 (8)	0.0044 (8)	-0.0014 (9)
C16	0.0342 (13)	0.0281 (12)	0.0414 (13)	0.0024 (10)	0.0145 (10)	0.0002 (10)
C17	0.0481 (16)	0.0254 (12)	0.0533 (15)	0.0066 (11)	0.0202 (12)	0.0045 (11)
C18	0.0441 (15)	0.0357 (14)	0.0500 (15)	0.0196 (11)	0.0154 (12)	0.0124 (11)
C19	0.0306 (12)	0.0398 (14)	0.0345 (12)	0.0107 (10)	0.0067 (10)	0.0073 (10)
C20	0.0244 (11)	0.0321 (12)	0.0223 (10)	0.0060 (9)	0.0074 (8)	0.0028 (9)
C21	0.0225 (11)	0.0325 (12)	0.0212 (10)	0.0036 (9)	0.0028 (8)	-0.0007 (8)
C22	0.0225 (11)	0.0456 (15)	0.0402 (13)	0.0042 (10)	0.0008 (10)	-0.0012 (11)
C23	0.0224 (12)	0.0523 (16)	0.0536 (15)	-0.0079 (11)	0.0019 (11)	-0.0087 (13)
C24	0.0189 (10)	0.0216 (10)	0.0211 (9)	-0.0006 (8)	0.0028 (8)	0.0008 (8)
C25	0.0278 (11)	0.0269 (12)	0.0335 (12)	-0.0030 (9)	0.0034 (9)	0.0001 (9)
C26	0.0228 (10)	0.0242 (11)	0.0237 (10)	0.0014 (8)	0.0039 (8)	-0.0001 (8)
C27	0.0196 (10)	0.0213 (10)	0.0228 (10)	-0.0026 (8)	0.0039 (8)	0.0000 (8)
C28	0.0202 (10)	0.0217 (10)	0.0211 (9)	-0.0013 (8)	0.0027 (8)	-0.0008 (8)
C29	0.0247 (10)	0.0247 (11)	0.0183 (9)	0.0004 (8)	0.0030 (8)	0.0000 (8)
C30	0.0339 (13)	0.0375 (14)	0.0430 (13)	-0.0103 (11)	0.0064 (10)	-0.0029 (11)
N1	0.0220 (9)	0.0239 (9)	0.0263 (9)	-0.0012 (7)	0.0013 (7)	0.0002 (7)
N2	0.0215 (9)	0.0238 (9)	0.0297 (9)	-0.0012 (7)	0.0033 (7)	0.0019 (7)
N3	0.0213 (9)	0.0253 (9)	0.0230 (8)	0.0009 (7)	0.0027 (7)	-0.0006 (7)
N4	0.0193 (8)	0.0249 (9)	0.0241 (8)	-0.0006 (7)	0.0018 (7)	0.0010 (7)
N5	0.0213 (9)	0.0282 (10)	0.0243 (9)	0.0004 (7)	0.0046 (7)	0.0010 (7)
N6	0.0229 (9)	0.0225 (9)	0.0198 (8)	0.0008 (7)	0.0029 (7)	0.0020 (7)
N7	0.0230 (9)	0.0221 (9)	0.0201 (8)	0.0014 (7)	0.0028 (7)	-0.0004 (7)
N8	0.0253 (9)	0.0261 (10)	0.0300 (9)	0.0032 (7)	0.0073 (7)	0.0010 (8)
Ni1	0.01218 (12)	0.01396 (13)	0.01827 (12)	0.00018 (9)	0.00154 (9)	0.00298 (9)
Ni2	0.01201 (12)	0.01406 (13)	0.02351 (13)	0.00011 (9)	-0.00159 (9)	-0.00094 (9)
01	0.0289 (8)	0.0294 (8)	0.0297 (8)	0.0042 (7)	0.0017 (6)	0.0053 (6)
O2	0.0350 (9)	0.0362 (9)	0.0261 (8)	0.0005 (7)	0.0081 (7)	0.0033 (7)
O3	0.0313 (8)	0.0339 (9)	0.0290 (8)	-0.0002 (7)	0.0117 (6)	0.0004 (7)
O4	0.0233 (8)	0.0314 (8)	0.0345 (8)	0.0059 (6)	0.0067 (6)	0.0015 (7)
O5	0.0282 (8)	0.0299 (8)	0.0197 (7)	0.0023 (6)	0.0027 (6)	0.0006 (6)
O6	0.0213 (7)	0.0253 (8)	0.0237 (7)	0.0044 (6)	0.0026 (6)	0.0023 (6)
O7	0.0453 (10)	0.0375 (9)	0.0213 (7)	0.0138 (7)	0.0086 (7)	0.0016 (6)
O8	0.0298 (8)	0.0255 (8)	0.0262 (7)	0.0078 (6)	0.0071 (6)	0.0017 (6)

Geometric parameters (Å, °)

C1—N1	1.341 (3)	C18—H18	0.9300
C1—C2	1.376 (3)	C19—C20	1.386 (3)
С1—Н1	0.9300	С19—Н19	0.9300
C2—C3	1.378 (3)	C20—N8	1.339 (3)
С2—Н2	0.9300	C20—C21	1.487 (3)
C3—C4	1.388 (3)	C21—N5	1.344 (3)
С3—Н3	0.9300	C21—C22	1.388 (3)
C4—C5	1.382 (3)	C22—C23	1.385 (3)
C4—H4	0.9300	С22—Н22	0.9300

C5—N1	1.343 (3)	C23—C30	1.380 (3)
C5—C6	1.486 (3)	С23—Н23	0.9300
C6—N2	1.344 (3)	C24—N6	1.367 (2)
C6—C7	1.393 (3)	C24—C28	1.378 (3)
С7—С8	1.381 (3)	C24—C26	1.477 (3)
С7—Н7	0.9300	C25—N5	1.341 (3)
C8—C9	1.380 (3)	C25—C30	1.379 (3)
С8—Н8	0.9300	С25—Н25	0.9300
C9—C10	1.380 (3)	C26—O8	1.255 (2)
С9—Н9	0.9300	C26—O7	1.269 (2)
C10—N2	1.337 (3)	C27—O6	1.244 (2)
C10—H10	0.9300	C27—O5	1.292 (2)
C11—O1	1.253 (2)	C27—C28	1.465 (3)
C11—O2	1.283 (2)	C28—N7	1.370 (2)
C11—C12	1.474 (3)	C29—N7	1.340 (2)
C12—N3	1.367 (3)	C29—N6	1.348 (3)
C12—C14	1.380 (3)	С29—Н29	0.9300
C13—N4	1.340 (3)	С30—Н30	0.9300
C13—N3	1.343 (3)	Ni1—N7 ⁱ	2.0869 (16)
С13—Н13	0.9300	Ni1—N6	2.1188 (17)
C14—N4	1.372 (3)	Ni1—N5	2.1235 (17)
C14—C15	1.469 (3)	Ni1—N8	2.2721 (17)
C15—O4	1.243 (2)	Ni1—O8	2.1543 (14)
C15—O3	1.290 (2)	Ni1—O6 ⁱ	2.2052 (14)
C16—N8	1.338 (3)	Ni2—N4 ⁱⁱ	2.0775 (17)
C16—C17	1 387 (3)	Ni2—N3	2,0840 (17)
C16—H16	0.9300	Ni2—N1	2.1167 (17)
C17—C18	1.371 (4)	Ni2—N2	2.2040 (17)
C17—H17	0.9300	Ni2—O1	2.2060 (15)
C18—C19	1.381 (3)	Ni2—O4 ⁱⁱ	2.2562 (15)
N1—C1—C2	122.8 (2)	C30—C25—H25	118.6
N1—C1—H1	118.6	08—C26—O7	124.56 (19)
С2—С1—Н1	118.6	O8—C26—C24	117.73 (17)
C1—C2—C3	118.6 (2)	O7—C26—C24	117.72 (18)
С1—С2—Н2	120.7	O6—C27—O5	123.16 (17)
С3—С2—Н2	120.7	O6—C27—C28	119.16 (17)
C2—C3—C4	119.1 (2)	O5—C27—C28	117.63 (17)
С2—С3—Н3	120.5	N7—C28—C24	108.64 (16)
С4—С3—Н3	120.5	N7—C28—C27	118.86 (17)
C5—C4—C3	119.3 (2)	C24—C28—C27	131.94 (18)
С5—С4—Н4	120.3	N7—C29—N6	113.77 (17)
C3—C4—H4	120.3	N7—C29—H29	123.1
N1—C5—C4	121.45 (19)	N6—C29—H29	123.1
N1—C5—C6	116.03 (17)	C23—C30—C25	118.0 (2)
C4—C5—C6	122.51 (19)	С23—С30—Н30	121.0
N2—C6—C7	121.41 (19)	С25—С30—Н30	121.0
N2—C6—C5	115 71 (18)	C5 N1 C1	119 70 (19)
	115.71 (10)	CJ-NI-CI	110.79 (10)

C8—C7—C6	119.2 (2)	C1—N1—Ni2	123.69 (14)
С8—С7—Н7	120.4	C10—N2—C6	118.62 (18)
С6—С7—Н7	120.4	C10—N2—Ni2	126.76 (14)
C7—C8—C9	119.3 (2)	C6—N2—Ni2	114.62 (13)
С7—С8—Н8	120.3	C13—N3—C12	104.63 (16)
С9—С8—Н8	120.3	C13—N3—Ni2	142.82 (14)
С10—С9—С8	118.3 (2)	C12—N3—Ni2	110.93 (13)
С10—С9—Н9	120.9	C13—N4—C14	104.74 (16)
С8—С9—Н9	120.9	C13—N4—Ni2 ⁱⁱⁱ	141.99 (14)
N2—C10—C9	123.2 (2)	C14—N4—Ni2 ⁱⁱⁱ	112.03 (13)
N2-C10-H10	118.4	C25—N5—C21	119.34 (18)
С9—С10—Н10	118.4	C25—N5—Ni1	121.91 (14)
O1—C11—O2	124.32 (19)	C21—N5—Ni1	118.67 (14)
O1—C11—C12	118.16 (18)	C29—N6—C24	104.46 (16)
O2—C11—C12	117.50 (18)	C29—N6—Ni1	143.59 (13)
N3—C12—C14	108.67 (17)	C24—N6—Ni1	108.51 (13)
N3—C12—C11	119.01 (18)	C29—N7—C28	104.53 (16)
C14—C12—C11	132.26 (19)	C29—N7—Ni1 ^{iv}	141.18 (14)
N4—C13—N3	113.74 (18)	C28—N7—Ni1 ^{iv}	110.15 (12)
N4—C13—H13	123.1	C16—N8—C20	118.33 (18)
N3—C13—H13	123.1	C16—N8—Ni1	127.12 (15)
N4—C14—C12	108.22 (17)	C20—N8—Ni1	113.87 (14)
N4—C14—C15	119.50 (17)	N7 ⁱ —Ni1—N6	99.90 (6)
C12—C14—C15	132.07 (19)	N7 ⁱ —Ni1—N5	161.90 (6)
O4—C15—O3	123.69 (19)	N6—Ni1—N5	98.05 (6)
O4—C15—C14	118.47 (18)	N7 ⁱ —Ni1—O8	95.58 (6)
O3—C15—C14	117.78 (18)	N6—Ni1—O8	79.55 (6)
N8—C16—C17	123.1 (2)	N5—Ni1—O8	89.91 (6)
N8—C16—H16	118.4	N7 ⁱ —Ni1—O6 ⁱ	79.12 (6)
C17—C16—H16	118.4	N6—Ni1—O6 ⁱ	95.92 (6)
C18—C17—C16	118.1 (2)	N5—Ni1—O6 ⁱ	96.78 (6)
C18—C17—H17	120.9	O8—Ni1—O6 ⁱ	172.42 (5)
С16—С17—Н17	120.9	N7 ⁱ —Ni1—N8	87.57 (6)
C17—C18—C19	119.5 (2)	N6—Ni1—N8	171.93 (6)
C17—C18—H18	120.3	N5—Ni1—N8	74.38 (6)
C19—C18—H18	120.3	O8—Ni1—N8	102.90 (6)
C18—C19—C20	119.2 (2)	O6 ⁱ —Ni1—N8	82.42 (6)
C18—C19—H19	120.4	N4 ⁱⁱ —Ni2—N3	99.91 (6)
С20—С19—Н19	120.4	N4 ⁱⁱ —Ni2—N1	158.35 (7)
N8—C20—C19	121.8 (2)	N3—Ni2—N1	96.10 (7)
N8—C20—C21	115.37 (18)	N4 ⁱⁱ —Ni2—N2	90.15 (6)
C19—C20—C21	122.7 (2)	N3—Ni2—N2	168.11 (6)
N5-C21-C22	120.8 (2)	N1—Ni2—N2	75.93 (6)
N5-C21-C20	116.31 (18)	N4 ⁱⁱ —Ni2—O1	101.11 (6)
C22—C21—C20	122.7 (2)	N3—Ni2—O1	78.98 (6)

C23—C22—C21	119.3 (2)	N1—Ni2—O1	96.17 (6)
C23—C22—H22	120.3	N2—Ni2—O1	92.94 (6)
C21—C22—H22	120.3	N4 ⁱⁱ —Ni2—O4 ⁱⁱ	78.28 (6)
C30—C23—C22	119.6 (2)	N3—Ni2—O4 ⁱⁱ	93.22 (6)
C30—C23—H23	120.2	N1—Ni2—O4 ⁱⁱ	86.39 (6)
C22—C23—H23	120.2	N2—Ni2—O4 ⁱⁱ	95.04 (6)
N6-C24-C28	108.60 (17)	01—Ni2—O4 ⁱⁱ	171.99 (5)
N6—C24—C26	119.41 (17)	C11—O1—Ni2	111.60 (12)
C28—C24—C26	131.89 (18)	C15—O4—Ni2 ⁱⁱⁱ	111.54 (13)
N5-C25-C30	122.8 (2)	C27—O6—Ni1 ^{iv}	110.79 (12)
N5—C25—H25	118.6	C26—O8—Ni1	112.64 (12)
Symmetry codes: (i) $-x+2$, $y+1/2$, $-z+1/2$; (ii) $-x+1$, $y-1/2$, $-z+3/2$; (iii) $-x+1$, $y+1/2$, $-z+3/2$; (iv) $-x+2$, $y-1/2$, $-z+1/2$.			

Fig. 2

